
osmar: OpenStreetMap and R

by Manuel J. A. Eugster and Thomas Schlesinger

September 10, 2012

This is a preprint of the article “osmar: OpenStreetMap and R”
accepted for publication on 2012-08-14 by the R-Journal.

OpenStreetMap provides freely accessible and editable geographic data.
osmar smoothly integrates the OpenStreetMap project into the R ecosystem.
osmar provides infrastructure to access OpenStreetMap data from different
sources, to enable working with the OSM data in the familiar R idiomology,
and to convert the data into objects based on classes provided by existing R
packages. This paper explains the package’s concept and shows how to use
it. As an application we present a simple navigation device.

1 Introduction

“OpenStreetMap creates and provides free geographic data such as street maps
to anyone who wants them” announces the OpenStreetMap wiki main page
(OSM Foundation, 2011)—and we think R users want free geographic data.
Therefore, the add-on package osmar (Schlesinger and Eugster, 2012) pro-
vides extensible infrastructure for integrating the OpenStreetMap project
(OSM) into the R project.

The aim of the OpenStreetMap project is to create a free editable map of
the world. The project maintains a database of geographic elements (nodes,
ways and relations) and features (such as streets, buildings and landmarks).
These data are collected and provided by volunteers using GPS devices, aerial
imagery, and local knowledge. The most prominent application is the ren-
dering of the geographic data and features into raster images (for example,
for the OSM map on the website). However, the project also provides an ap-
plication programing interface (API) for fetching and saving raw geographic
data from and to the OSM database.

The OpenStreetMap project provides data in the OSM XML format, which
consists of three basic elements:

Node: The basic element. It consists of the attributes latitude and longitude.

1

Planet file

API v0.6

OSM-XML osmar

igraph

sp

. . .

get_osm_data()

get_osm_data()

as_osmar()

as_igraph()

as_sp()

as_. . .()

summary()

find()

subset()

. . .

get_osm()

Figure 1: Schematic description of the osmar concept.

Way: An ordered interconnection of nodes to describe a linear feature (e.g.,
a street). Areas (e.g., buildings) are represented as closed ways.

Relation: A grouping of elements (nodes, ways, and relations), which are
somehow geographically related (e.g., bus and cycle routes).

Each element has further attributes like the element ID (unique within the
corresponding element group) and timestamp. Furthermore, each element
may have an arbitrary number of tags (key-value pairs) which describe the
element. Ways and relations, in addition, have references to their members’
IDs.

In order to access the data, OSM provides an application programming
interface (API) over the hypertext transfer protocol (HTTP) for getting and
putting raw data from and to the OSM database. The main API (currently
in version 0.6) has calls to get elements (and all other elements referenced
by it) by, among other things, their ID and a bounding box. However, the
requests are limited (e.g., currently only an area of 0.25 square degrees can
be queried). An (unlimited) alternative is provided by planet files. These
are compressed OSM XML files containing different OSM database extracts
(e.g., the entire world or an individual country or area). Planet files can be
downloaded from the OSM wiki and processed using the command-line Java
tool osmosis (Henderson, 2011).

For a complete introduction into the OSM project, the OSM API, and
the OSM XML file format we refer to the project’s wiki available at http:

//wiki.openstreetmap.org/.
The aim of the package osmar is to provide extensible infrastructure to get

and to represent the above described OSM data within R, to enable working
with the OSM data in the familiar R idiomology, and to convert the OSM
data to objects based on classes provided by other packages. Figure 1 visu-
alizes the package’s concept. This is a different idea than existing packages
like OpenStreetMap (Fellows, 2012), RgoogleMaps (Loecher, 2012), and
ggmap (Kahle and Wickham, 2012) follow. Whereas these packages provide

2

http://wiki.openstreetmap.org/
http://wiki.openstreetmap.org/

access to the already rendered data (i.e., raster images), osmar enables the
usage of the raw OSM data.

In the following section we present the package’s implementation and us-
age. Note that we try to increase readability by only showing the relevant
arguments of plot statements. We refer to the demo and the vignette of the
osmar package for the actual plot statements.

2 Getting the data

We begin with defining the data source. Currently two sources, HTTP-API
and planet files, are supported. In this section we use the API of the OSM
project with the default URL url = http://api.openstreetmap.org/api/

0.6/:

> library("osmar")

Loading required package: XML

Loading required package: RCurl

Loading required package: bitops

Loading required package: gtools

Loading required package: geosphere

Loading required package: sp

Attaching package: 'osmar'

The following object(s) are masked

from 'package:utils':

find

> src <- osmsource_api()

We can retrieve elements by using the IDs of the elements. The IDs in these
examples have been extracted by hand from the OpenStreetMap website (via
its export functionality). For example, one node:

> get_osm(node(18961430), source = src)

osmar object

1 nodes, 0 ways, 0 relations

Or, one way with the way-related data only or with the data for all referenced
elements (nodes and relations):

> get_osm(way(3810479), source = src)

osmar object

0 nodes, 1 ways, 0 relations

3

http://api.openstreetmap.org/api/0.6/
http://api.openstreetmap.org/api/0.6/

> get_osm(way(3810479), source = src, full = TRUE)

osmar object

11 nodes, 1 ways, 0 relations

The first statement retrieves the way only (because the default value of the
full argument is FALSE). The second statement additionally retrieves all
nodes that are members of the way (i.e., all nodes that define the way).

The second possibility to retrieve elements is to specify a bounding box
by defining the left, bottom, right, and top coordinates (corner_bbox()), or
the center point and width and height in meters (center_bbox()):

> bb <- center_bbox(174.76778, -36.85056, 700, 700)

> ua <- get_osm(bb, source = src)

> ua

osmar object

2427 nodes, 428 ways, 70 relations

The use of planet files via osmosis as source works analogously. The
source is specified by the function osmsource_osmosis(). The function’s
two arguments are the path to the planet file (file) and the path to the
osmosis tool (osmosis = "osmosis"). Note that per default it is assumed
that the osmosis executable is in your PATH environment variable. The
navigator example demonstrates the usage of planet files.

3 Working with the data

The retrieved osmar object is a list with the three elements nodes, ways,
and relations. Each element again is a list containing data.frames for the
attributes (the attrs list element) and meta-data (the tags list element)
of the OSM elements. Ways and relations additionally have a data.frame

containing their members (the refs list element).

Summarize. For each element nodes, ways, and relations of an osmar

object an individual summary method is available. The overall summary
method for an osmar object shows the three individual summaries all at
once.

> summary(ua$nodes)

osmar$nodes object

2427 nodes, 771 tags

..$attrs data.frame:

id, lat, lon, user, uid, visible, version,

changeset, timestamp

4

..$tags data.frame:

id, k, v

Bounding box:

lat lon

min -36.85661 174.7627

max -36.84472 174.7753

Key-Value contingency table:

Key Value Freq

1 addr:city Auckland 101

2 addr:street Queen Street 61

3 addr:country NZ 40

4 addr:postcode 1010 39

5 comment Determined via Keypa... 29

6 addr:street Symonds Street 27

7 highway traffic_signals 23

8 addr:street Lorne Street 19

9 highway bus_stop 15

10 amenity cafe 11

In the case of the summary for nodes, the number of elements and tags, as
well as the available variables for each corresponding data.frame are shown.
The bounding box of the coordinates and a contingency table of the top ten
most frequently available key-value pairs are printed.

The summaries for the other two elements ways and relations are similar.
Note that these methods in fact return the contingency table of all available
key-value pairs and, in addition, further information which is not printed
but may be useful for a descriptive analysis. We refer to the help pages (e.g.,
?summary.nodes) for a detailed description of the return values.

Find. In order to find specific elements within the osmar object, the find()
function allows to query the object with a given condition. As the basis of os-
mar objects are data.frames, the condition principally is a logical expression
indicating the rows to keep. In addition, one has to specify to which element
(nodes, node(); ways, way(); or relations, relation()) and to which data
(attributes, attrs(); meta-data, tags(); or members, refs()) the condition
applies.

If, for example, we want to find all traffic signal nodes, we know from the
object’s summary that the corresponding value in the attrs data.frame is
"traffic_signals". We can express this condition as follows:

> ts_ids <- find(ua,

+ node(tags(v == "traffic_signals")))

> ts_ids

5

[1] 25769635 25769637 25769641 ...

The result is a vector with node IDs (in this case 25 traffic signal nodes) or
NA. If the correct spelling is unknown, the defined binary operators %agrep%
for approximate matches (see ?agrep) and %grep% for pattern matches (see
?grepl) can be used:

> bs_ids <- find(ua,

+ node(tags(v %agrep% "busstop")))

> bs_ids

[1] 678301119 737159091 1318401034 ...

This returns 15 bus stops available in the ua osmar object.
We use the functions find_down() and find_up() to find all related ele-

ments for given element IDs. The OSM basic elements define a hierarchy,

node← way← relation,

and these two functions enable us to find the related elements up and down
the hierarchy. For example, find_up() on a node returns all related nodes,
ways, and relations; find_down() on a node returns only the node itself.
On the other hand, find_up() on a relation returns only the relation itself;
find_down() on a relation returns the relation and all related ways and
nodes.

> hw_ids <- find(ua, way(tags(k == "highway")))

> hw_ids <- find_down(ua, way(hw_ids))

In this example we find all ways which have a tag with the k attribute set
to "highway". These contain hardened and recognised land routes between
two places used by motorised vehicles, pedestrians, cyclists, etc. The return
value of find_down() and find_up() is a list containing the element IDs:

> str(hw_ids)

List of 3

$ node_ids : num [1:1321] 25769641 ...

$ way_ids : num [1:253] 4309608 ...

$ relation_ids: NULL

Subset. The return value of the find functions then can be used to create
subsets of osmar objects. The subset() method for osmar objects takes ele-
ment IDs and returns the corresponding data as osmar objects. For example,
the two subsets based on the traffic signal and bus stop element IDs are:

> ts <- subset(ua, node_ids = ts_ids)

> ts

6

osmar object

25 nodes, 0 ways, 0 relations

> bs <- subset(ua, node_ids = bs_ids)

> bs

osmar object

15 nodes, 0 ways, 0 relations

The subset based on the highway element IDs is:

> hw <- subset(ua, ids = hw_ids)

> hw

osmar object

1321 nodes, 253 ways, 0 relations

Note that the subsetting of osmar objects is divided into the two steps “find-
ing”and“subsetting” to have more flexibility in handling the related elements
(here with using find_down() and find_up(), but more sophisticated rou-
tines can be imagined).

Plot. The visualization of osmar objects is possible if nodes are available in
the object (as only these OSM elements contain latitude and longitude infor-
mation). The functions plot_nodes() and plot_ways() plot the available
nodes as dots and ways as lines, respectively. The plot() method combines
these two function calls. Note that this is a plot of the raw data and no
projection is done (see the following section for a projected visualization).

> plot(ua)

> plot_ways(hw, add = TRUE, col = "green")

> plot_nodes(ts, add = TRUE, col = "red")

> plot_nodes(bs, add = TRUE, col = "blue")

4 Converting the data

In order to use the complete power of R on OpenStreetMap data, it is
essential to be able to convert osmar objects into commonly used objects
based on classes provided by other packages. Currently, osmar provides two
converters—into the sp (Bivand et al., 2008) and the igraph (Csardi, 2011)
packages. In this section we show the conversion to sp objects, the navigation
device example shows the conversion to igraph objects.

sp provides special data structures and utility functions for spatial data.
Spatial data classes are available for points, lines, and polygons and others
(see Bivand et al., 2008). The osmar package provides the as_sp() function,

> args(as_sp)

7

Figure 2: University of Auckland; roads are green lines; bus stops are blue and traffic
signals are red points.

function(obj,

what = c("points", "lines", "polygons"),

crs = osm_crs(),

simplify = TRUE)

NULL

to convert an osmar object into the corresponding points, lines, and polygons
sp objects (given the required data are available). Note that the appropriate
WGS84 coordinate reference system (CRS) for OpenStreetMap data is used
(cf. osm_crs()).

Polygons. Polygons are used to represent areas, which OpenStreetMap rep-
resents as closed ways. Buildings, for example, are closed ways and can be
converted to an sp polygon object:

> bg_ids <- find(ua, way(tags(k == "building")))

> bg_ids <- find_down(ua, way(bg_ids))

> bg <- subset(ua, ids = bg_ids)

> bg

osmar object

991 nodes, 110 ways, 0 relations

> bg_poly <- as_sp(bg, "polygons")

8

The result is a SpatialPolygonsDataFrame with the osmar object’s at-
tributes (the attrs element) as its data. Functionality provided by the sp
package can now be used to analyze the OSM data; e.g., the summary()

method or the spplot() method—the latter one, for example, to see how
often each building was modified:

> spplot(bg_poly, c("version"))

Figure 3: Number of modifications per building.

Meta-data (the tags element) and members (the refs element) are not au-
tomatically converted to a SpatialPolygonsDataFrame’s data.

Lines and points. The conversion of lines and points works similarly:

> hw_line <- as_sp(hw, "lines")

> bs_points <- as_sp(bs, "points")

The results are SpatialLinesDataFrame and SpatialPointsDataFrame ob-
jects, respectively.

In order to finalize the University of Auckland example we create a bus
route map and visualize the available bus routes belonging to the bus stops.
Therefore, we find all bus relations available in the object, retrieve the cor-
responding data from the OSM API, and convert the data into lines (note
that this computation takes some time):

> bus_ids <- find(ua, relation(tags(v == "bus")))

> bus <- lapply(bus_ids,

+ function(i) {

+ raw <- get_osm(relation(i), full = TRUE)

+ as_sp(raw, "lines")

+ })

9

We use the argument full = TRUE to retrieve the relation itself and all
related members. In detail, this means we retrieve all nodes, ways, and
relations that are members of the specified relation; and, recursively, all
nodes which are members of the retrieved ways.

We then use the sp plot methods to create the final bus route map:

> plot(bg_poly, col = "gray")

> plot(hw_line, add = TRUE, col = "green")

> plot(bs_points, add = TRUE, col = "blue")

> for (i in seq(along = bus)) {

+ plot(bus[[i]], add = TRUE, col = "blue")

+ }

Figure 4: Bus route map of the University of Auckland; roads are green lines; bus stops
and bus routes are blue points and lines

.

5 R as navigator

We always wanted to know how a navigation device works. Now with osmar,
R provides the necessary components and this serves as nice example on
how to use osmar. The general idea is to (1) get the data, (2) extract all
highways, (3) create a graph of all highway nodes with the distance between
the highway nodes as edge weights, (4) compute the shortest path on the
graph, and (5) trace the path on the highways.

10

Get the data. We use a planet file from Munich as the data source and use
osmosis (Henderson, 2011) to process the data. Note that osmosis has to
be in your PATH environment variable.

> library("osmar")

> url <- "http://osmar.r-forge.r-project.org/"

> file <- "muenchen.osm.gz"

> download.file(sprintf("%s%s", url, file), file)

> system("gzip -d muenchen.osm.gz")

Get the center of Munich with a 3km× 3km bounding box:

> src <- osmsource_osmosis(file = "muenchen.osm")

> muc_bbox <- center_bbox(11.575278, 48.137222,

+ 3000, 3000)

> muc <- get_osm(muc_bbox, src)

> muc

osmar object

13713 nodes, 3156 ways, 76 relations

For the navigation device we only need streets. This means, we have to find
all ways which are tagged as highways and have a name tag, then find the
associated nodes, and finally subset the full osmar object:

> hways_muc <- subset(muc,

+ way_ids = find(muc, way(tags(k == "highway"))))

> hways <- find(hways_muc, way(tags(k == "name")))

> hways <- find_down(muc, way(hways))

> hways_muc <- subset(muc, ids = hways)

> hways_muc

osmar object

3889 nodes, 995 ways, 0 relations

Suppose we want to start our route at the “Sendlinger Tor”. This means we
first have to find a node which is tagged with the name “Sendlinger Tor” and
then the nearest highway node:

> hway_start_node <- local({

+ id <- find(muc,

+ node(tags(v == "Sendlinger Tor")))[1]

+ find_nearest_node(muc, id,

+ way(tags(k == "highway")))

+ })

> hway_start <- subset(muc, node(hway_start_node))

For a given node (by its ID), the function find_nearest_node() finds the
nearest node with the specified conditions (the package geosphere, Hijmans

11

et al., 2011 is used to compute the distances). The end of the route should be
in the northeast part of Munich; so we find nodes which are in the northeast
and take one highway node:

> hway_end_node <- local({

+ id <- find(muc,

+ node(attrs(lon > 11.59 & lat > 48.150)))[1]

+ find_nearest_node(muc, id,

+ way(tags(k == "highway")))

+ })

> hway_end <- subset(muc, node(hway_end_node))

Finally, we visualize the initial situation:

> plot_nodes(muc, col = "gray")

> plot_ways(hways_muc, add = TRUE)

> plot_nodes(hways_muc, add = TRUE, col = "black")

> plot_nodes(hway_start, add = TRUE, col = "red")

> plot_nodes(hway_end, add = TRUE, col = "blue")

Figure 5: Highway map of Munich center.

The gray nodes are all nodes available in the full osmar object, the black
nodes and lines are the road networks available in the highway-osmar object,
the red and blue dots denote the starting and ending nodes of the searched
route.

Compute the route. In order to compute the shortest route between the
defined starting and ending nodes, we convert the highway-osmar object into

12

a graph. R provides a set of packages to work with graphs, we decided to
use igraph (Csardi and Nepusz, 2006; Csardi, 2011):

> library("igraph0")

> gr_muc <- as_igraph(hways_muc)

> summary(gr_muc)

Vertices: 2381

Edges: 2888

Directed: TRUE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight, name.

The osmar object nodes define the nodes of the graph (node IDs are used
as graph node names). The osmar object ways define the edges (way IDs
are used as edge names), and the weights of the edges are the geographical
distance between the nodes.

The package igraph provides different shortest path algorithms (e.g., Dijk-
stra and Bellman-Ford) via the function get.shortest.paths(). The short-
est route (not necessarily unique) is:

> route <- get.shortest.paths(gr_muc,

+ from = as.character(hway_start_node),

+ to = as.character(hway_end_node))[[1]]

> route_nodes <- as.numeric(V(gr_muc)[route]$name)

We construct a new osmar object containing only elements related to the
nodes defining the route:

> route_ids <- find_up(hways_muc, node(route_nodes))

> route_muc <- subset(hways_muc, ids = route_ids)

> route_muc

osmar object

101 nodes, 83 ways, 0 relations

And add the route to the highway map of Munich center in Figure 5:

> plot_nodes(route_muc, add = TRUE, col = "green")

> plot_ways(route_muc, add = TRUE, col = "green")

Route details. In order to present route details like street names, distances,
and directions we have to work directly on the internals of the osmar objects.

We start by extracting the route’s node IDs (which are in the correct order)
and the way IDs (which we have to order) where the nodes are members:

> node_ids <- route_muc$nodes$attrs$id

> way_ids <- local({

13

Figure 6: Shortest route on highway map of Munich center.

+ w <- match(node_ids, route_muc$ways$refs$ref)

+ route_muc$ways$refs$id[w]

+ })

Then we extract the names of the ways in the correct order:

> way_names <- local({

+ n <- subset(route_muc$ways$tags, k == "name")

+ n[match(way_ids, n$id), "v"]

+ })

The next step is to extract the nodes’ coordinates,

> node_coords <-

+ route_muc$nodes$attrs[, c("lon", "lat")]

and to compute the distances (meters) and the bearings (degrees) between
successive nodes (using the package geosphere, Hijmans et al., 2011):

> node_dirs <- local({

+ n <- nrow(node_coords)

+ from <- 1:(n-1)

+ to <- 2:n

+

+ cbind(dist = c(0,

+ distHaversine(node_coords[from,],

+ node_coords[to,])),

+ bear = c(0,

14

+ bearing(node_coords[from,],

+ node_coords[to,])))

+ })

Finally, we pack together all the information, and additionally compute the
cumulative distance and a 16-point compass rose direction (the compass()

function is available in the package demo):

> route_details <-

+ data.frame(way_names, node_dirs)

> route_details$cdist <-

+ cumsum(route_details$dist)

> route_details$dir <-

+ compass(route_details$bear)

The result is a data.frame with a row for each node of the route. The row
shows the name of the associated way, the distance (meters) and bearing
(degrees and compass rose) to the successive node of the route, and the
cumulative distance:

> head(route_details)

way_names dist bear cdist dir

1 Sendlinger-Tor-Platz 0 0 0 N

2 Wallstraße 65 62 65 ENE

3 Herzog-Wilhelm-Straße 29 75 94 ENE

4 Oberanger 10 78 104 ENE

5 Oberanger 69 94 173 E

6 Nikolaus-Gradl-Weg 25 76 198 ENE

Needless to say that this navigation device can be made much more so-
phisticated. The osmar package contains the complete source code of the
basic navigation device as a demo and we invite everybody to improve R as
a navigator.

6 Summary

The osmar package extends the R ecosystem with infrastructure to work
together with the OpenStreetMap project. So far, functionality is available to
get data from different sources (e.g., planet file and API v0.6), to consolidate
the data as an R osmar object, to work with the osmar object (e.g., subsetting
and plotting), and to convert it to objects based on classes provided by other
packages (e.g., to igraph and sp objects).

Future work includes the implementation of further converters; e.g., a con-
verter from osmar objects to raster image objects via the OpenStreetMap
package (Fellows, 2012). We are also interested in implementing converters
from objects provided by other R packages to osmar objects and in saving

15

these objects in different OpenStreetMap sources via a put_osm() function.
This would be, in fact, the completion of the osmar concept illustrated in
Figure 1 with arrows from the right to the left blocks.

Furthermore, we would like to incorporate tools originated in the Open-
StreetMap ecosystem. One idea is the implementation of a rule-based ren-
dering tool for generating SVG images of OSM data along the lines of os-
marender (Topf, 2011). Another interesting project is Osmium, a fast and
flexible C++ and Javascript toolkit and framework for working with OSM
data (Topf, 2012). An R interface (potentially via Rcpp modules; Eddel-
buettel and François, 2011) would provide a very fast and flexible way to
work with large OSM data sets.

7 Acknowledgment

The authors thank two anonymous reviewers and Joe Sakshaug for their
constructive comments to improve the manuscript.

References

R. S. Bivand, E. J. Pebesma, and V. Gomez-Rubio. Applied Spatial Data
Analysis with R. Springer, NY, 2008. URL http://www.asdar-book.

org/.

G. Csardi. igraph: Network Analysis and Visualization, 2011. URL http:

//cran.r-project.org/package=igraph. R package version 0.5.5-2.

G. Csardi and T. Nepusz. The igraph software package for complex net-
work research. InterJournal, Complex Systems:1695, 2006. URL http:

//igraph.sf.net.

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ inte-
gration. Journal of Statistical Software, 40(8):1–18, 2011. URL http:

//www.jstatsoft.org/v40/i08/.

I. Fellows. OpenStreetMap: Access to OpenStreetMap Raster Images,
2012. URL http://CRAN.R-project.org/package=OpenStreetMap. R
package version 0.2.

B. Henderson. osmosis, 2011. URL http://wiki.openstreetmap.org/

wiki/Osmosis. Java application version 0.39.

R. J. Hijmans, E. Williams, and C. Vennes. geosphere: Spherical Trigonom-
etry, 2011. URL http://CRAN.R-project.org/package=geosphere. R
package version 1.2-24.

16

http://www.asdar-book.org/
http://www.asdar-book.org/
http://cran.r-project.org/package=igraph
http://cran.r-project.org/package=igraph
http://igraph.sf.net
http://igraph.sf.net
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-project.org/package=OpenStreetMap
http://wiki.openstreetmap.org/wiki/Osmosis
http://wiki.openstreetmap.org/wiki/Osmosis
http://CRAN.R-project.org/package=geosphere

D. Kahle and H. Wickham. ggmap: A Package for Spatial Visualization with
Google Maps and OpenStreetMap, 2012. URL http://CRAN.R-project.

org/package=ggmap. R package version 2.1.

M. Loecher. RgoogleMaps: Overlays on Google Map Tiles in R, 2012. URL
http://CRAN.R-project.org/package=RgoogleMaps. R package version
1.2.0.

OSM Foundation. The OpenStreetMap Project, 2011. URL http://

openstreetmap.org.

T. Schlesinger and M. J. A. Eugster. osmar: OpenStreetMap and R, 2012.
URL http://cran.r-project.org/package=osmar. R package version
1.1.

J. Topf. osmarender, 2011. URL http://wiki.openstreetmap.org/wiki/

Osmarender. XSLT transformation scripts.

J. Topf. Osmium, 2012. URL http://wiki.openstreetmap.org/wiki/

Osmium. Fast and flexible C++ and Javascript toolkit and framework
for working with OSM data.

Manuel J. A. Eugster
Institut für Statistik
Ludwig-Maximilians-Universität München
Ludwigstrasse 33, 80539 Munich
Germany
manuel.eugster@stat.uni-muenchen.de

Thomas Schlesinger
Institut für Statistik
Ludwig-Maximilians-Universität München
Ludwigstrasse 33, 80539 Munich
Germany
tho.schlesinger@googlemail.com

17

http://CRAN.R-project.org/package=ggmap
http://CRAN.R-project.org/package=ggmap
http://CRAN.R-project.org/package=RgoogleMaps
http://openstreetmap.org
http://openstreetmap.org
http://cran.r-project.org/package=osmar
http://wiki.openstreetmap.org/wiki/Osmarender
http://wiki.openstreetmap.org/wiki/Osmarender
http://wiki.openstreetmap.org/wiki/Osmium
http://wiki.openstreetmap.org/wiki/Osmium
mailto:manuel.eugster@stat.uni-muenchen.de
mailto:tho.schlesinger@googlemail.com

	Introduction
	Getting the data
	Working with the data
	Converting the data
	R as navigator
	Summary
	Acknowledgment

